
Collaborative Hydroponics

John Pothier Nate Harada Sam Zeckendorf

April 14, 2015

Abstract

We address the difficulty of indoor gardening, and its effects on urban
and low-income areas. We propose a solution based on hydroponics, which
leverages machine learning to grow healthy plants automatically without
user expertise. We present a plant growth optimization algorithm based
on collaboration between independent systems and continuous user feed-
back. We discuss our system architecture at a high level and our working
prototype in detail. We present a mathematical model of plant growth for
English Ivy, and discuss experimental results evaluating the efficacy of the
optimization algorithm applied to this model. We identify the strengths
and weaknesses of our approach, and propose avenues for future work.

1 Introduction

Gardening has found its place as an international pastime. With its own cable
television channel, hundreds of shows, and over 65,000 gardening books available
on Amazon, it is clear that gardening is viewed as a skill hobby, similar to playing
the piano or woodworking. This viewpoint appeals to the millions of amateur
gardeners who are constantly seeking to improving their skills, but what about
the millions more who cannot dedicate the time or space to creating a successful
garden?

Clearly individual skill is only one part of a successful garden, and for the
estimated 250 million Americans who live in or near a city, space for plants
is a premium few can afford. Hydroponics offers a solution for urban growers,
but at the expense of a heavy domain knowledge requirement and an even
higher penalty of failure. Hydroponic systems tend to be expensive, clunky,
and require an intimate understanding of their systems in order to be effective
for most plants. Most plants will die within a day when a soilless systems fails,
and the more complex the system the less likely the user will be able to make
repairs. In this paper we introduce Seed, a self contained, learning hydroponic
system that we hope can solve these problems.

An individual Seed system represents one of many on a central server. This
server collects plant health data from all surrounding systems and applies an
online gradient descent algorithm in an attempt to optimize the plant health
values for the entire population. The server then provides new growth parame-
ters to each system, and the process repeats each time new data is provided by
the user. We strive to provide a simple interface for both plant health ratings
as well as monitoring for the user, while still maintaining powerful algorithms
“under the hood”. We have developed a prototype hardware system, as well as

1

a scalable, cloud based web framework which would support additional param-
eters and algorithms. We describe each component in detail, as well as provide
experimental results for the Seed system based on several different hypotheses.

2 Theory

2.1 Motivation

Gardening requires a non-negligible amount of commitment from the average
person. Watering must be scheduled daily for outdoor gardening, and weeding
and transplanting must take place on a regular basis. Even for a homeowner it
is easy to forget to water or weed with the hustle and bustle of modern life. For
the city dweller who lacks outdoor garden space, the situation becomes even
more difficult. Indoor gardening solutions generally tend towards hydroponics,
as the lack of natural light and fertilizers make soil-based growing difficult to
control. These hydroponics solutions require even more commitment from the
grower — there is less margin for error and the gardener requires a fair amount
of knowledge to maintain a system.

The option of growing one’s own fruits and vegetables has become more at-
tractive in the past decades. The increasingly geographically segregated econ-
omy and environmental concern associated with shipping food has generated
considerable pushback against non-locally sourced food. Unfortunately, locally
sourced food tends to be more expensive and be less available than mass pro-
duced produce. A hydroponic solution can lower prices for luxury and staple
items, as well as allow for non-seasonal items.

In socioeconomically depressed urban areas, fresh fruits and vegetables fetch
even more of a premium. These geographic areas are referred to as “food
deserts”, and occur when there is inadequate access to quality food, especially
produce. Food deserts have been linked to diet related health problems in af-
fected areas, especially for children and young adults who may not have the
motivation or means to travel to a quality supermarket. Hydroponic systems
such as Seed could offer these areas a way to easily grow their own produce,
and if implemented in enough households could potentially provide an oasis of
quality, healthy food to residents.

There has already been some work in self-maintained gardening systems
[?] but in general the idea of networked optimization has not been explored.
Additionally there has been work to develop algorithms capable of recognizing
and rating plant’s health quantiatively [?] that would be useful as a metric in
our system.

2.2 High Level Design

At a high level, the Seed solution is viewed as a convex optimization problem.
Each plant on the network represents one datapoint, with the user providing an
oracle that is called once a day for each datum. The Seed hardware acts as an
interface to mediate between the algorithm itself and the user. We assume that
for any plant, there is an optimal set of parameters that will maximize a “health
metric”, or an objective function which measures the health of the plant. The
basic procedure to grow plants is as follows:

2

1. Startup Phase

(a) Transplant young plants to rockwool filled pots found in the Seed
system.

(b) Mix a nutrient solution using any hydroponic nutrient solution.

(c) Add new systems to the Seed server.

2. Run Phase

(a) Upload plant health data based on one of many possible plant health
metrics.

(b) Server runs an iteration of learning algorithm (gradient descent)

(c) Each system will query server for parameters on a set interval

The hardware itself is based on an Arduino Uno microcontroller, while the
software running the algorithm is a cloud-based Django server. The exact spec-
ifications for each component of Seed will be discussed later in detail.

2.3 Clustered Approximate Gradient Descent

Our learning algorithm is a distributed variant of gradient descent. In contrast
to typical gradient descent, where you sample the objective function one point
at a time and calculate the exact gradient of the function, here we sample at
multiple points and approximate the gradient.

2.3.1 Problem Setup

Let f : Rn → R be a convex cost function. At time t, the learner chooses N
points (feature vectors) xi,t ∈ Rn, and an oracle returns the values f(x1,t), ..., f(xN,t).
That is, at each time step, the learner is allowed to sample f at N arbitrary
points. The goal is to find the optimal point x∗ such that f(x∗) is the global
minimum of f .

2.3.2 Algorithm

The idea of the algorithm is to cluster xi,t into k clusters, such that the points
in each cluster are close enough together to closely approximate the gradient of
f . Using the resulting collection of gradients of f , we can intelligently choose
xi,t+1 such that the next collection of samples f(xi,t+1) are smaller than the
current samples f(xi,t). Thus, eventually the sample collection will converge on
the minimum of f .

3

Algorithm 1 Clustered Approximate Gradient Descent (CAGD)

input: N ,M ,α,k
set: L← 0
Randomly choose initial sample points xi,0∀i ∈ {1, ..., N}
for t = 1, 2, 3, ...,M do

Receive samples f(x1,t−1), ..., f(xN,t−1)
Set S ← {(xi,t−1[1], ...,xi,t−1[n], f(xi,t−1)) | i = 1, ..., N}
Cluster S into k clusters, c1, ..., ck
for κ = 1, 2, ..., k do

Compute linear regression on {(x, f(x)) | (x, f(x)) ∈ cκ} to produce the
coefficient vector gκ
if ||gκ|| > L then
L← ||gκ||

end if
end for
Set η ← α√

LM
for κ = 1, 2, ..., k do

Set Cκ ← {i | (xi,t−1, f(xi,t−1)) ∈ cκ}
for i ∈ Cκ do

xi,t ← xi,t−1 − ηgκ[i]1
end for

end for
end for

At every iteration, we first cluster the previous sample points, then for each
cluster we compute the linear least squares fit to the locus of feature vectors
and function samples. The vector gκ contains the coefficients output by the
linear regression that correspond to the non-constant terms of the best-fit hy-
perplane f̂κ(x) = c+〈gκ,x〉–that is, gκ is the gradient of the hyperplane, which
approximates the gradient of f inside the cluster cκ. After computing gκ, we
perform a gradient descent step on all of the points in the cluster cκ. In this
sense, each step of CAGD is k simultaneous gradient descent problems. In the
end we hope each xi,t will converge to the same point x∗. However, to find x∗

it is only required that one of the clusters arrives at a stationary point, where
gκ ≈ 0. This will imply that cluster κ has ”found” x∗, and x∗ ≈ c̄κ, where c̄κ
is the centroid of {x | (x, f(x)) ∈ cκ}.

3 Project Design

3.1 Overview

The Seed system functions atop an abstraction of three subsystems: A central-
ized server, individual controllable units, and the functional network of every
Seed system in tandem. The end-user provides feedback to the system between
individual units and the server through a web front-end or an iPhone applica-
tion, by rating the health of the individual units and providing raw data.The
relationship between these subsystems can be observed in Figure 1.

The centralized server back-end is composed of three separate subsystems
as well: An HTTP server designed to handle and serve requests to plants and

4

Figure 1: Systems Overview

users, a PostgreSQL database used to store plant and user information, and
the learning algorithm, designed to process database information and provide
the HTTP server meaningful control states for individual plant systems. The
HTTP server is written in Django, a web framework in the Python program-
ming language that provided the core RESTful1 framework for requests and
responses. This framework makes use of the MVC2, a powerful abstraction
that lets a controller (the Seed Django application) provide unique views of
data models depending on the source or type of request. Users make requests
to the server for plant information, which is provided in views visually through
charts and graphs. Plant units make automated requests to the server to update
control parameters; the server responds with a control state view, the binary
operation of nutrient-rich water flow and light system, following a computed
duty cycle. The PostgreSQL database is used to store the data models, which
capture current and past information about plants, as well as basic data about
their owners. Using this database, the Django application can serve views of
processed data, computed by the learning algorithm. The server queries the al-
gorithm for updated parameters, which are in turn delivered to respective plant
units.

Seed control systems are electromechanical schemes that control water and
nutrient flow, as well as full-spectrum light delivery, to individual plants. These
systems are composed of a web-enabled microcontroller, water and air pumps,

1Representational State Transfer: web-architecture constraints within hypermedia systems.
2Model View Controller: Common server side architecture for serving data.

5

and an electrically controlled light. The microcontroller, in this case an Ar-
duino UNO, queries the server for the most recent control states in binary
strings:{b1,b2,b3. . . } where each bit is an On/Off state for nutrients, light, or
any future parameters. These control states are actualized through the use
of mechanical relays, enabling and disabling AC power to pumps and lighting
systems. The circuit can be observed in Figure 2.

Figure 2: Controls Schematic

The cluster of networked systems acts as a separate subsystem, providing
feedback to the server that relates to a given individual plant through proxim-
ity in parameters – while this is currently wired into performance, information
such as temperature, geography, and humidity could provide alternate methods
of identifying similarity between units. The behavior of plants at large hypo-
thetically allow for the server’s algorithm to create statistically significant data
for control states; as a layer of abstraction, the networked systems represent the
“Big Data” behind Seed’s learning aspect.

3.2 Prototype Design

Our prototype consists of one physical structure, which contains a plant enclo-
sure and an eletronics enclosure. See Fig. 3.

The plant enclosure contains four English Ivy plants, each in its own pot
with rockwool. Each plant has its own water pump, which sits in a bucket full
of nutrient solution and pumps nutrients through tubing up through the lid
of the bucket and down through the rockwool. This setup is referred to as a
hydroponic drip system. In addition, there is a full-spectrum fluorescent light

6

(a) (b)

Figure 3: System with (a) open and (b) closed cover.

above, and an air pump that feeds into the bucket that airates the water. There
is also a removable shield that prevents the bright light from bothering people
in the room.

The electronics enclosure contains one Arduino Uno microcontoller, which
controls the power to the water pumps and light, and the control circuit as
described in Fig. 2. The Arduino is connected via an Ethernet cable to the
internet, allowing it to query our server periodically to receive control parameter
updates.

4 Method of Solution

The core of Seed is the dynamic control of the hardware subsystem (water
pumps, lights) via online learning. After constructing our prototype Seed sys-
tem, we tested the viability of optimizing the health of a plant using a machine
learning algorithm. Our investigation consisted of a set of experiments con-
ducted over the course of a month. By analyzing the data collected from these
experiments, we were be able to get an idea of how well the proposed plant-
health optimization framework performs in practice, and what the limitations
of our system are.

7

4.1 Experimental Purpose

The aim of these experiments was to study how plant health reacts to different
levels of nutrient solution, and to assess whether plant health is able to be
optimized by varying nutrient solution dosage over time.

4.2 Experimental Setup

A total of five English Ivy plants were analyzed in our experiments: four grown
hydroponically (hydroponic plants), and one grown in a pot and soil at a win-
dow sill (control plant). The experimental plants were further divided into two
groups: plants that did not have their nutrient level varied (control hydroponic
plants), and those that had their nutrient level varied by the learning algorithm
(experimental plants). All plants were bought as mature adults, all living in
the same soiled pot. The plants were separated by removing the soil from the
pot and disentangling the root systems, producing five independent plants. The
experimental plants were placed into our system, and the control plant was re-
potted using the original soil. The hydroponic plants were named plant0, plant1,
plant2, and plant3, and will henceforth be referred to by these names.

4.3 Experimental Procedure

The nutrient level for the experimental plants was varied via pulse-width mod-
ulation (PWM) of the water pumps. Every TPWM Mseconds, all four water
pumps were turned on. For plant i, the ith water pump was turned off niTPWM

seconds after being turned on, where ni ∈ [0, 1] is defined as the nutrient level
for plant i. Thus, ni controls how long nutrient solution is delivered to plant
i during each PWM cycle, so varying ni will vary the total amount of water
and nutrients delivered to plant i. The light cycle for experimental plants was
fixed as a simple 12-hours on, 12-hours off schedule. Every day, the hydroponic
light turned on at 8 a.m. and turned off at 8 p.m. The nutrient solution was
comprised of MaxiGrow nutrient powder dissolved tap water. Every week, the
solution was drained and refilled with 3 gallons of water mixed with 6 teaspoons
of MaxiGrow.

The control plant was placed at a window sill on the second story of a
building. The plant was watered every other day, to the point where the top
of the soil was slightly damp. The plant received approximately 10 hours of
sunlight daily through the window.

Every T days, each plant was evaluated on performance using two metrics:
leaf color (pcolor) and leaf growth rate (pgrowth). See the succeeding sections
for detailed descriptions. For each experiment, we designated one performance
metric, popt ∈ {pcolor, pgrowth}, as the target of our optimization algorithm.
That is, popt are samples of the objective function for the online learning algo-
rithm (see section 4.5). The measured values for both pcolor and pgrowth were
recorded in a spreadsheet, and popt was also recorded in the database for pro-
cessing. After the popt values were stored, the learning algorithm output new
values of ni for each experimental plant. This was the way the system ”learned”
from performance of its constituent plants.

8

4.4 Performance Measurement

4.4.1 Leaf Color

As described in [?], the color of a plant’s leaves is related to the amount of
chlorophyll the leaves contain. Generally speaking, greener leaves have more
chlorophyll. Therefore, one way to quantify the health of a plant is to measure
the average wavelength of light λavg reflected by the leaves and compare to the
wavelength of pure green light λgreen = 495 nm. 3 Since the leaves of our target
plant typically reflect light at greater than 500 nm, we can simply measure how
small λavg is in order to assess how close it is to λgreen. In particular, the Leaf
Color performance metric is given by pcolor = 1

λavg
.

To calculate λavg,i for a particular plant i, we chose one representative leaf li
for color measurement 4, scanned it using a portable color scanner, and imported
the image onto a Windows computer. The JPEG image from the scanner was
cropped to isolate the leaf, then imported into MATLAB R© and processed to
convert each RGB pixel in the cropped image into a wavelength in nanometers.
The algorithm for this conversion can be found in [?]. λavg was set as the
average converted wavelength value over all pixels.

4.4.2 Leaf Growth Rate

The Leaf Growth Rate metric is simply the number of leaves the plant grew
since the last time step. That is, pgrowth = Lt − Lt−1, where Lτ is the number
of leaves on the plant at time step τ . Note that since a plant may lose leaves,
pgrowth can be negative.

4.5 Learning Algorithm Parametrization

As mentioned previously, we aimed to optimize each experimental plant’s per-
formance, popt,i, by varying ni. In the context of the gradient descent algorithm
discussed in section 2.3, ni are the feature vectors xi,t and popt,i = −f(ni)

5,
where f is the theoretical performance function that models a plant’s health as
a function of its nutrient level.

4.6 Experiments

4.6.1 Experiment 1

In Experiment 1, we set TPWM = 7200 (2 hours), T = 1, and popt = pcolor. We
designated plant0 and plant3 as the control hydroponic plants, with n0 = 0.125
and n3 = 1 (corresponding to 3 hours and 24 hours of daily nutrient solution
volume per day). The experimental plants, plant1 and plant2, were given initial
values n1 = 0.479 and n2 = 0.521. In the gradient descent algorithm, we set
M = 14 and α = 10.

3By “pure green” we mean the color with the smallest wavelength that is widely considered
a shade of green.

4The best measurement of λavg,i would take the average wavelength over all the leaves on
the plant, but this would be extremely tedious. Also note that li was the same for every time
step t, so that for each plant the same leaf was scanned over the course of all experiments.

5The minus sign is to indicate that we are trying to maximize popt, but the general algo-
rithm aims to minimize the objective function.

9

4.6.2 Experiment 2

In Experiment 1, we set TPWM = 7200, T = 3, and popt = pgrowth. We again
designated plant0 and plant3 as the control hydroponic plants, with n0 = 0.125
and n3 = 1. The experimental plants, plant1 and plant2, were given initial
values n1 = 0.458 and n2 = 0.542. In the gradient descent algorithm, we set
M = 14 and α = 0.1. We had to stop updating n1 and n2 at t = 4, since further
updates would have driven these values to zero.

5 Results

All numerical data collected is presented below in Fig. 4 and 5.

5.1 Experiment 1

(a) (b)

(c) (d)

(e)

Figure 4: Results from experiment 1 with a timescale of approximately two
weeks.

10

5.2 Experiment 2

(a) (b)

(c) (d)

(e)

Figure 5: Results from experiment 2 with a timescale of approximately two
weeks.

In addition to this data, we also took pictures of each plant every day to
visually document growth. The initial and final pictures for the control plant
and plant0 are presented in Fig. 6 and 7.

6 Analysis

6.1 Experiment 1

In Experiment 1, it is clear that each hydroponic plant improved over time, for
both pcolor and pgrowth. It would be tempting to interpret this as a success for
our learning algorithm, but Fig. 4(e) reveals that the nutrient level wasn’t varied
significantly over time. The hydroponic plants all grew well with the amount of
nutrients they were given. However, plant0, which received the least amount of
nutrients, exhibited the largest amount of improvement for both metrics. On

11

(a) (b)

Figure 6: Initial (a) and final (b) of control plant

(a) (b)

Figure 7: Initial (a) and final (b) of plant0

the other hand, the control plant performed the worst for color, and among the
worst for growth.

The performance vs. nutrient graphs (Fig. 4(a) and (c)) demonstrate a ma-

12

jor weakness in our model (see 7.3.1). We see many different performance values
mapped to the same nutrient level. This is a result of the natural progression
of leaf growth over time, independent of the precise nutrient level. It appears
these plots do not tell us anything about the relationship between performance
and nutrient level.

6.2 Experiment 2

Experiment 2 differed from Experiment 1 in two major ways. First we measured
performance every three days instead of daily, to allow plants to properly react
to changes in nutrient level. In addition, we used leaf growth as the target for
optimization.

We see similar trends to Experiment 1 in terms of leaf color (Fig. 5(a) and
(b)), but the remaining plots exhibit some important differences.

Unlike in Experiment 1, the nutrient level varied significantly over time (Fig.
5(e)), to the point where we had to manually stop the algorithm from updating
to prevent nutrient level from approaching zero. The reason for this can be
seen in Fig. 5(c), where most of the high-growth data lies near low nutrient
values. The most notable result of the large nutrient variation can be seen in
the trace for plant2 in Fig. 5(d). Growth is static for several timesteps, but as
the nutrient level is decreased, growth increases. However, plant1, which also
had its nutrient value varied, did not exhibit such improvement.

7 Conclusions

7.1 Successes

7.1.1 System Functionality

Our biggest success was building a fully functional automated plant care sys-
tem. The electronics and software controlling the water pumps, lights, and air
pump of the hydroponics system work exactly as intended, allowing for remote
control of all these components. In addition, we were able to grow four very
healthy-looking English Ivy plants using our automated hydroponics system,
which required very little attention to take care of. The control plant grown in
the window sill was substantially less healthy than the hydroponic plants by the
end–the leaves were turning yellow and falling off, while the hydroponic plants
all had green, vibrant leaves (see Fig. 6 and 7).

7.1.2 Evidence of Health Improvement via Machine Learning

As discussed in section 6, there was evidence of long-term plant improvement
resulting from the learning algorithm. In particular, in Experiment 2, for the
first three time steps plant2 grew no new leaves. However, after n3 was algorith-
mically lowered to a small value (0.16), it began to grow new leaves. We stopped
collecting data after time step 5, but visually it is clear plant2 has continued
to improve since the end of the experiment. By observing the data for plant0,
which received a constantly small amount of nutrients, we conjecture that En-
glish Ivy responds well to a small amount of water and nutrients. We can say
our algorithm “learned” this fact by observing plant1 and plant2 and examining

13

the relationship between their leaf growth pgrowth,1, pgrowth,2 and nutrient levels
n1, n2.

7.2 Failures

7.2.1 Noisy Data

Although there are some patterns apparent in our results (e.g. Fig 4 shows aver-
age increase in pcolor over time), there is obviously a lot of noise in performance
measurements. Notably, the performance vs. nutrient level plots look mean-
ingless, and it is clear that nutrient level is not the only independence variable
controlling performance. This reveals that our growth model is oversimplistic
and overall does not produce salient data.

7.2.2 Statistical Insignificance

Apart from the success described in subsection 7.1.2, we cannot say that the
experimental plants overall benefitted from the “intelligently” varied nutrient
level with statistical significance. With such a small sample size and variability
of the data, we cannot attribute stastical signifiance to any discoveries about the
utility of our learning algorithm. In order to draw truly scientific conclusions,
we would need hundreds of plants and a more rigorous method of evaluating
health (e.g. using a chlorophyll meter on each leaf).

7.3 Future Work

7.3.1 Time Sensivity

One of the most glaring oversights in our plant growth model is the assumption
that plant health at some particular time t0 depends only on the amount of
water it receives within a day of t0. While we knew this was an unrealistic view,
we underestimated the influence of time on the fidelity of our data.

There are two major ways time should be factored into the model: plant
reaction time and plant age.

Plant reaction time is the minimal time delay between when a plant’s en-
vironment is changed (say, nutrient level is lowered) and when the plant’s ap-
pearance reflects that change. For example, it could take a whole week before
an unwatered plant begins to wilt. We attempted to account for this delay in
Experiment 2 by only taking measurements every 3 days, but this was just a
heuristic based on observation of how quickly leaves grow. It is clear that for
our algorithm to be truly robust, we need the exact time delay associated with
every performance metric, either given as an input parameter or dynamically
estimated by some means.

Plant age is simply how long the plant has been alive. We thought we
controlled for this by buying already-mature plants, but it is clear by examining
the data and visually inspecting the plant’s growth that plants generally get
healthier as time goes on, provided they are not neglected. In order to examine
the relationship between nutrient level and health, it is necessary to consider
the natural performance improvement brought by age.

14

7.3.2 Higher-Dimensional Data

The algorithm described in section 2.3 is formulated with a feature space of
arbitary dimension n. In our protoype we considered only the one-dimensional
problem, where xi,t = ni ∈ R–only nutrient level is controlled. However, if
we decided to control more parameters, such as temperature and p.H., the
algorithm would not change, but performance could be boosted. When targeting
more parameters, every plant has a finer grain, more realistic mathematical
representation, allowing for better practical performance. In addition, more
paramters strengthens the ability to simulatanously accomodate plants living in
different environments. To understand this aspect, consider two plant systems,
one in Alaska and one in the Florida keys, which are given the same amount
of nutrients every day. Under our experimental model, since only nutrient level
matters, the plants will be treated equally by the algorithm. However, we
know that plants grow differently depending on temperature and humidity, and
Alaska is colder and drier than the Florida keys. Incorporating temperature
and humidity measurements will permit the algorithm to differentiate between
these environments and treat the plants accordingly.

7.3.3 Easy Performance Measurement

In order to collect data for our algorithm, we needed to manually scan and
count leaves. These are boring and unattractive tasks for the end-user, so to
get closer to a commercial product we need to simplify user feedback. One way
of accomplishing this is to make performance a heurstic: have the user rate
the plant on a scale from 1-10 based on a few qualitative aspects. There are
drawbacks to this approach, but it would streamline performance measurement
and make Seed more user-friendly.

7.3.4 Non-Convexity

Currently, we assume that the objective function f is convex (or concave), i.e.
has a unique optimal point. However, there is no reason to believe that the
“true” performance function is convex, regardless of which performance metric
we consider. For non-convex problems, optimizating is much trickier, but it
would be wise to consider the general non-convex problem when developing a
new algorithm.

7.4 Closing Comments

All considered, we consider our project a success. We set out to create a network-
based learning framework for automated hydroponics, and our prototype is pre-
cisely this. While so far we only have hints that our algorithm actually improves
plant health, the gradient descent methodology is based on decades of research
in convex optimization, so it is reasonable to believe that our strategy could
be proven effective by a wider scale, more carefully conducted study. As a re-
motely controlled, dependable hydroponics system, our product works exactly
up to spec. The question remains of how well Seed scales to thousands or mil-
lions of participants, and whether the improvements suggested in 7.3 are feasible
to incorporate into the existing framework. Our prototype is only a glimpse into

15

what is possible with this concept–one day, a system like Seed could very well
revolutionalize indoor gardening and bring fresh produce to the masses.

8 References

References

[1] Nikolaus Correll, Nikos Arechiga, Adrienne Bolger, Mario Bollini, Ben Char-
row, Adam Clayton, Felipe Dominguez, Kenneth Donahue, Samuel Dyar,
Luke Johnson, et al. Indoor robot gardening: design and implementation.
Intelligent Service Robotics, 3(4):219–232, 2010.

[2] Muhammad Abdul Hakim Shibghatallah, Siti Nurul Khotimah, Sony Suhan-
dono, Sparisoma Viridi, and Teja Kesuma. Measuring leaf chlorophyll con-
centration from its color: A way in monitoring environment change to plan-
tations. arXiv preprint arXiv:1305.1148, 2013.

16

